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Nuclei have long been associated with liquids,
as testi�ed by the success of the liquid drop
model. The surface energy introduces the sim-
plest correction to the bulk, leading to a model
of 1% accuracy. A similar approach may hold
for other kinds of clusters for which the surface
energy is the main correction to bulk properties.
The equilibrium between a liquid and its vapor

is described by the Clapeyron Equation dp=dT =
�Hm=�VmT , p and T are the pressure and tem-
perature, �Hm is the molar enthalpy of vapor-
ization and �Vm is the di�erence of the molar
volumes of vapor, V v

m, and liquid, V l
m. Special-

ization to the case of a drop of radius r, de-
scribed readily in the thermodynamic limit [1],
is achieved by modifying the enthalpy to account
for the surface energy [2]

�Hm = �H0

m � csS
l
m = �H0

m �
3csV

l
m

r
; (1)

�H0

m is the bulk molar enthalpy, Sl
m and V l

m are
the surface and volume of the drop and cs is the
surface energy coeÆcient.
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Figure 1: (a) Saturated vapor pressure as a func-
tion of T . (b) Isobaric caloric curve: dashed
(solid) lines represent bulk (drop) behavior.
H 0 = H(�H0

m=3csV
l
m)

3=(4�=V l
m).

Neglecting V l
m compared to V v

m, considering
the vapor ideal (V v

m = T=p) and assuming �Hm

constant we integrate the Clapeyron Equation,

p = p0 exp[�(�H0

m=T ) + (3csV
l
m=rT)]: (2)

This contains all thermodynamical information
needed to characterize the phase coexistence of
the liquid drop of with its vapor. Fig. 1a gives a
map of p0 = p0(T 0; r0) (p0 = p=p0, T

0 = T=�H0

m,
r0 = r�H0

m=3csV
l
m). The salient feature is the

rise of p with decreasing r. For any r, Eq. (2)
describes the equilibrium between the drop and
its vapor; it is the phase diagram of the drop
where a phase is de�ned by r.
To operate at constant pressure p0, the drop is

enclosed in a deformable container and an exter-
nal pressure p0 is applied. As the drop is heated
T increases via �H = Cl

p�T , Cl
p is the liquid's

heat capacity and is nearly constant. When T
reaches T0 and p = p0, the vapor �rst appears
and expands against the container. The heat of
vaporization is absorbed at a rate Hm(r0) and as
the drop evaporates, r decreases from its initial
value r0

0
. At constant T , p would rise, but at

constant p, T decreases (Fig. 1a) as the system
absorbs its heat of vaporization, thus,
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After the drop has fully evaporated, the vapor's
temperature increases via �H = Cv

p�T , Cv
p is

the vapor's heat capacity at constant pressure.
The caloric curve (Eq. (3), Fig. 1b) has a decreas-
ing branch associated with the phase transition
along which the heat capacity will be negative!
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